s波Fractional Vortexにおける電子状態 トポロジカルな性質による新奇束縛状態

東大理 理研JRA 永井佑紀 東大総合文化 加藤雄介

日本物理学会@北海道大学

分数量子渦(Fractional vortex)の先行研究

銅酸化物高温超伝導体がd波超伝導体であると決定付けた実験

分数量子渦観測

結晶配向が異なる基盤を走査SQUID顕微鏡(SSM)で観察:中心に半整数量子渦生成

C. C. Tsuei, et. al., Phys. Rev. Lett. 73 (1994) 593.)

MgB₂のようなtwo-gap超伝導体における 実現可能性: Goryo et al (2006).

s波超伝導体に囲まれたd波超伝導微小素子の隅に分数量子渦発生の可能性

実験: 超伝導d-dot素子の作製と評価 II Yamamoto et al.: 2007年日本物理学会春季大会

理論:Electronic structure of a half vortex, M. Machida et al. Physica C 412-414 (2004) 367

様々な研究がある

走査型トンネル顕微鏡(STM)

STM/STSによる局所電子状態密度分布の測定

FIG. 4. Simultaneously taken XY images of dI/dV(0 mV, x, y) and dI/dV(0.5 mV, x, y) with B = 500 G and the same for 2000 G. The width of all images is 1500 Å. Differential tunneling conductance of 0.9 and larger in normalized units is shown as white.

局所電子状態密度分布(LDOS)

Andreev束縛状態

H. Nishimori et al.: J. Phys. Soc. Jpn. **73** (2004) 3247

Fig. 2. Vortex lattice in YNi₂B₂C imaged by plotting $N_{\rm s}(E=0\,{\rm meV},{\bf r})$ on gray scale at 0.46 K (a) in 0.30 T (180 × 180 {\rm nm}^2) and (b) 0.07 T (360 × 360 {\rm nm}^2). Arrows in (b) indicate the directions of the *a*-axis.

Fig. 3. (a) Vortex image focused on lower left of vortices in Fig. 2(b) at 0.46 K in 0.07 T (72×72 nm²). (b) The angular dependence of $N_{\rm s}(0$ meV, r, θ) is shown. The angle was measured against the *a*-axis.

準粒子の情報(秩序変数の情報、 フェルミ面の情報等)

超伝導の特徴をよく反映する

走査型トンネル顕微鏡(STM)の利点

1. 空間解像度がSSMより高い

空間分解能:0.047nm(東工大西田研)

高解像度によって分数量子渦が観測可能かもしれない

2. 準粒子の情報が得られる

磁場分布よりも超伝導対称性の情報が多い

準粒子は秩序変数の位相変化に敏感である

得られた局所電子状態密度分布の解釈方法がほぼ確立されている

今までSSMで得られなかった情報が入手可能

なぜSTMか

Matsuba et al. JPSJ 76(2007) 063704

考える系と目的

渦度が1/nの分数量子渦糸がn個ある二次元s波超伝導体

渦度が1/n:一周すると秩序変数の位相が2π/n変化する

計算方法

Eilenberger equation: 2x2の行列微分方程式 (準古典近似)

$$-i\boldsymbol{v}_F\cdot\nabla\check{g}(\hat{\boldsymbol{p}},\boldsymbol{r};i\omega_n) = \begin{bmatrix} \begin{pmatrix} i\omega_n + \frac{e}{c}\boldsymbol{v}_F\cdot\boldsymbol{A}(\boldsymbol{r}) & -\Delta(\hat{\boldsymbol{p}},\boldsymbol{r}) \\ \Delta^*(\hat{\boldsymbol{p}},\boldsymbol{r}) & -i\omega_n - \frac{e}{c}\boldsymbol{v}_F\cdot\boldsymbol{A}(\boldsymbol{r}) \end{pmatrix}, \check{g}(\hat{\boldsymbol{p}},\boldsymbol{r};i\omega_n) \end{bmatrix}$$

2本の微分方程式に変換

$$\boldsymbol{v}_{\mathrm{F}} \cdot \boldsymbol{\nabla} \hat{a} + 2\omega_{n} \hat{a} + \hat{a} \hat{\Delta}^{\dagger} \hat{a} - \hat{\Delta} = 0,$$

$$\boldsymbol{v}_{\mathrm{F}} \cdot \boldsymbol{\nabla} \hat{b} - 2\omega_{n} \hat{b} - \hat{b} \hat{\Delta} \hat{b} + \hat{\Delta}^{\dagger} = 0,$$

$$\boldsymbol{v}_{\mathrm{F}} \cdot \boldsymbol{\nabla} \hat{b} - 2\omega_{n} \hat{b} - \hat{b} \hat{\Delta} \hat{b} + \hat{\Delta}^{\dagger} = 0,$$

$$\boldsymbol{v}_{\mathrm{F}} \frac{\partial a}{\partial x} + 2\omega_{n} a + a \Delta^{*} a - \Delta = 0,$$

$$\boldsymbol{v}_{\mathrm{F}} \frac{\partial b}{\partial x} - 2\omega_{n} b - b \Delta b + \Delta^{*} = 0,$$

ー次元一階微分方程式に帰着される

これらの微分方程式をルンゲクッタ法で数値的に解く Green関数が得られる→状態密度が得られる

ギャップの空間変動はtanh型を仮定する

1/2 Fractional Vortices (Half Vortices) 渦度1/2の分数量子渦

エネルギーによってLDOSが定性的に大きく異なる s波通常渦糸系ならすべて円形LDOS

- ・通常渦糸系の円形LDOSに似た楕円形
- ・ 内側に状態が存在しない(通常渦糸系と同じ)

通常のs波vortexの場合に類似

- ・通常の渦糸系と同じく、大きな円状LDOSパターン
- ・内側に新しいリボン状の束縛状態

通常s波vortex系にはなかった新しい束縛状態が生じている

分散関係による議論 1/2

Green関数の実部のエネルギー依存性

X軸方向に走る準粒子の場合

分散関係による議論 2/2

分散関係

Y軸方向に走る準粒子

X軸方向に走る準粒子

低エネルギー領域:branch cutを通る準粒子のみ 中エネルギー領域:branch cutを通らない準粒子のみ 高エネルギー領域:両方の準粒子

がLDOSに寄与する

特異な束縛状態の出現はFractional vortexの存在で生じている

1/3, 1/4 and 1/n Fractional Vortices

渦度1/3,1/4,1/nの分数量子渦

まとめ

準古典近似の範囲内でs波fractional vortexの局所電子状態密度分布を調べた

half vortexが二つある系

低エネルギー領域:ブーメラン型のLDOSパターン 低エネルギー領域ではX方向の準粒子は存在できない 中エネルギー領域:楕円形のLDOSパターン

高エネルギー領域:楕円形のLDOSパターンの内側に新奇束縛状態に由来するLDOSパターン

数値計算と解析計算で確かめた

d波でも同様に特異性が見られるはず

渦度が1/nであるfractional vortexがn個ある系

X軸方向の準粒子に関して

渦間距離 $\delta \to \infty$ の極限で、一つの束縛状態が存在する $\epsilon = \cos\left(\frac{\pi}{2n}\right)$ 渦度が1/n の場合、束縛状態がn個存在するようだ
(解析計算では示せていない)